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REAL-TIME IMPLEMENTATION OF THE KALMAN FILTER
FOR TRAJECTCRY ESTIMATICN

I  INTRODUCTION

The purpose of this technical memorandum is to describe the results
of a study concerned with real-time implementation of the Kalman filter
for estimating ballistic trajectories. As shown in previous studies? 2*
performed by the Information and Control Laboratory in support of the
NIKE-X system, the performance of the Kalman filter for the trajectory
estimation task is excellent; however, the computation time required
by this filter is relatively large. On the Univac 1108 computer, the com-
putation time per filter iteration is approximately 0.010 sec for endo-
atmospheric estimation; hence, with a data rate of 20 measurements per
secend, the filter runs about 5 times faster than real time. For exo-
atmespheric estimation (in which the filter has 6 states instead of 7,
and is programmed in double precision--~see Sec. VI), the filter's itera-
tion time is approximately 0.011 sec; hence, with a data rate of one
measurement per second, the filter rums about 100 times faster than real
time.

For real-time estimation of multiple targets, the computation speed
of the Xalman filter may be inadequate (at least for endoatmospheric
trajectory estimation). Thus,'it is essential to improve the computa-
tional efficiency of the filtering algorithm; this should be done with

a minimum amount of degradation in filter performance.,

In Sec. I1I, the problem formulation is presented; this consists
of the equations of motion for the ballistic reentry vehicle and the
radar measurement equations. The equations for the extended Kalman

filter and a flow diagram depicting its operation are given in Sec. III.

In Secs., III and IV several approaches that may be used to modify
the Kalman filtering algorithm in order to reduce the computational

requirements are described; these include

*
References are listed at the end of the report.
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(1} Use of a precomputed approximation to the weighting matrix
in the filter equations (thils also eliminates the necessity
of calculating the covariance matrices); j.e., the weighting
matrix is precomputed off-line, rather than calculated recur-

sively on~line.

(2) Increasing the sample interval (data processing interval)
At, the computation speed of the fiiter relative to real

time increases as this parameter increases.

(3) Updating the weighting matrix and the covariance matrices at

intervals of AT sec, where At _ N =1, i.e., the weighting

At
matrix is only updated every N iterations and is held con-
stant in the filter equations for these iterations, before
being updated anew. This computaticnal algorithm will be refer-

red to as the piecewise-recursive Kalman filter.

The first approach was studied extensively in Ref. 1; the cther
two approaches will be investigated in considerable detail in this report.
These approaches were evaluated and compared by estimating the states of
2 ballistic trajectory based on simulated radar measurements that are
corrupted by noise; the simulated trajectories were generated frocm an
accurate model of reentry dynamics. The numerical results that were
obtained in this study are presented in Sec. V (for endoatmospheric
estimation) and Sec., VI (for exoatmospheric estimation). Estimation
errors in position, velocity, and acceleration, and the actual and estimated
B are plotted as functions of time for the various computer runs. In
addition, the computation times (on the Univac 1108) per iteration for
the different filter algorithms are presented.

For real-time estimation of multiple targets, the piecewise~recur-
sive Kalman filter is the most promising approach of those considered in
this report. For endoatmospheric estimation, it is possible to filter
measurements at a computational speed {on the Univac 1108) that is approxi-~
mately 20 or 25 times faster than real time (for At = 0,05 sec, Ar = 0.5
sec or At = 0,10 sec, At = 0.5 sec, respectively) and yet obtain accuracy
epproaching that of the fully impiemented Kalman filter; for exoatmospheric
estimation, the computational speed (on the Univac 1108) is approximately
500 times faster than real time (for At = 1,0 sec, Ar = 20 sec).

2




The last section of the report summarizes the results of this

study and indicates areas for future work.

I  PROBLEM FORMULATION

A. Equations of Motion for the Ballistic Reentry Vehicle

A model for the equations of motion for the ballistic reentry

vehicle is taken to be*

"\:-?.w(icos{,-i'sin{,)+u)2x-—é- —gv.\'_:-g-i_-
8 r
1 og

. .. 2 .

y = - 20(x sin ) - @ sin L{(r + 2) cos { -y sin ] - 1o Vy - g L
o 2 B n

. 2 1 PB, Z4T
Z = 2ph(x cos L+ w cos_&[(Q)+ z) cos L, ~y sin 4} - ; —E~ Vz - g . (1)
1

where x, y, z are the radar-cenfered cartesian coordinates (£ft) of the

ballistic missile, and

p = atmospheric density (slug/fts)

B8 = ballistic coefficient (lb/ftz)

L}

V= y +
= missile velocity (ft/sec)
7
g=g°—§
r, )
= gravitational acceleration acting upon the missile (ft/sec”)
g, = gravitational acceleration at sea level (ft/secz)
r = earth radius (ft)
2, 2 2"
= + + -+
r Jx y (z + 1)

= distance from center of the earth to the missile (ft)
w = rotation rate of the earth (rad/sec)

{4 = latitude of the radar site.

*
A derivation of these equations is presented in Memorandum 37a and, hence,
will not be repeated here.

3

g

RN,

kT T ! DRV WA OPTN

2L




Peay

| 8

The x and y axes point east and north, respectively, and define a plane
tangent to the earth at the radar site; the z axis is perpendicular to
this plane and gives the vertical direction at the radar site. The

density p is a function of environmental factors and the altitude h,

which is given by

h=r -r = [x2 + y2 + (z + r°)2]é =T, . (2}

The ballistic coefficient g 1is a function of altitude, Mach number,

and unknown reentry vehicle parameters.

Finally, it should be noted that the above model assumes a rotating,

spherical earth with the ballistic missile taken to be a point mass.

That is, the model given by Eqs, (1) incliudes coriolis terms (those con- P
2 g
taining g), centripetal terms (those containing w ), gravity gradient

terms (those containing g), and drag terms (those containing g8). 5
N

Because g 1is highly dependent on the characteristics of the

missile being tracked, it must be estimated together with the position

skondiidias

and velocity state variables. This estimate is also necessary for pre-

(ki

diction of the future missile trajectory. As shown in Ref. 1, the per-

¢ o9

formance of the estimator is significantly improved if the quantity

P

p/B 1is estimated, where 8 is assumed to be locally constant and o

is assumed to be a locally exponential function of the altitude h, i.e.,

it is assumed that p has an altitude gradient,

b‘e—-xor

S (3)

in which K 1is a specified constant over each of several ranges of
altitude (h). Hence, the differential equation that models the behavior

of the additional state variable p/8 is given by

OR0
J
xxtyyt (z+ ro)i

= - K B E) ’ (4)
rl \B/

where h is obtained from Eq. (2).
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The state vector x, which describes the trajectory of the ballistic

Ty

missile, thus has seven components:

X, = x X, = b3 7
X, =y X. =y x, = 2 (8)
2 5 778 : :
X3=Z X6=Z }
The nonlinear system equations (1) and (4) can then be written in state-
variable form as follows:
Xy ;
X ;
Xg %
2 * 3
X = £(x) = ~2w(x6 cos 4 ~ %, sin £) + w ® o= 3 X8, VX, - & = , (8 ;
2 %5
- - y; + - - - L
Zw(x4 sin 4) - o sin v[(ro x3)cos 1 X, sin 4) %x7g°Vx5 g r1
2 X +ro
+ + - L] - ¢ -
Zw(x4 cos 4)+ w cos L[(ro x3)cos 1 x2 sin 4] §x7gOVa6 g )
+ + (% +
. L X, Xg (xs ro)x6
- K x
7 r g

sand 1

where 2(5) is a seven-dimensional vector function and

: |

7T
= + +
v ‘\/ X T %5 7 Xg

-

2 2 2 .
= + + ;
r1 ‘\/x:l xz (x3 + ro) H

The nonlinear differential equation (6) is inexact because p and

g do not exactly satisfy the assumptions made above, and also because
the reentry vehicle has additional degrees of freedom that have been
neglected. The actual trajectory of the ballistic missile (i.e., the
trajectory to be estimated) is generated by a set of equations that are

more accurate than the model described in Eg. (6). In order to account




WP

i

for these inaccuracies as well as actual system disturbances, a random
forcing function is introduced into Eq. (8}, yieiding
o= Hx)+w7, ("

where the seven-dimensional vector w’ is assumed to be 8 zero-mean,

white Gaussian noise process.

B. Radar Measurement Equations

Measurements of the target vehicle's pocsition are made every 5to
seconds by means of « phased-array radar. These measurements are made

of the angles ¢, vy, and the range r, which are defined in the radar-

1
are related to the ground coordinates xl, x2, x3 (or x, y, z) by the

face coordinate system of Fig. 1. The radar-face coordinates x_, xé, xé

following two rotations: a rotation of 90° - 7 from the vertical (xs),

and a rotation of £ <£from north (xz). Thus,

TARGET

’

$X2

T8-5188-136R

FIG.1 RADAR MEASUREMENTS
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1
x! = M x2 {8)
% X,
v 3 - 3
vhere
cos ¥ sin - sin * cos v sin £
M= [~-sin € sin ~ cos T cos v cog T , €))
¢ -COS T sin ~
and from Fig. 1,
! i
Xy r sin gy
xé = r sin vy
P 2
xé =r |l - sin3 x - sin v§é . (10)
Hence, the position cocrdinates xl, X xa are related to the

radar coordinates r, ¢, y by Eqs. (8), (9), and (iD), with =+ and ¥
being known constants determined by the radar configuration. These non-

linear relations can be expressed coacisely as

r

=~ 11
o |= blx, %, x) =BG, (11)

2
Y

where ﬂ(i) is a three-dimensional vector function. Thus, the nonlinear

measurement equation is given by

z = h(x) +v , (12)

where z 1is a three-dimensional vector containing the noise-corrupted
measurements of r, g, y and the radar measurement noise v 1is assumed

to be a zero-mean, white Gaussian noise process.
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IIX  EXTENDED KALMAN FILTER

A, Estimation Equatiois

The Kelman filter equations specify an estimate of the state of a
linear, time-varying dynamical system observed sequentislly in the
presence of additive white Gaussian noise; the state estimate obtained
at each time is the maximum likelihood estimate conditioned on all
measurements made up to that time.® The Kalman theory cannot be applied
directly to estimating the state of a hallistic reentry vehicle on the
basis of noise-corrupted radar measurements, because the equations of
motion (7) governing the missile and the measurement equation (12) are
noniinear functions of the state x. However, by first making the ap-
propriate linearizations, the Kalman theory can be applied to the non-
iinear case, The linearization equations together with the basic Kalman

filter equations constitute what is referred to as the Extended Kalman

Filter, As shown in Refs. 1 and 2, this approach has been successfully
applied to trajectory estimation problems in the NIXE-X system, Justi-
fication for this approach and a derivation of the extended Kalman filter

is presented in Ref. 5,

Since the extended Kalman filter is to be implemented on a digital
computer, it will be described in its discrete-time form in this
memorandum., The discrete time k will refer to the actual time k At,
where At is the sampling interval (data processing interval). Through-
out this report, X(i/j) will denote the estimate of the state x at
time 1, conditioned on the measurements through time j, and P(i/j)

will denote the covariance of the error in this estimate; i,e.,

x(1/3) = Elx(1)/2(3 ,z{3-1),...,2(1) ;%(0/0), P(C/0)]

E[fx(1) -2/ x(1)-R(1/9) 1T/3(J) ,2(3-1),...,2(1);%(0/0) ,P(0/0) ],
(13)

P(1/3)

where 2(0/0) 1is the a priori state estimate and P(0/0) is its error

covariance.

The measurement noise v given in Eq. (12) is a white Gaussian

random variable with

Nag
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0

E{v(K) ]

R(k) . (14)

E{v(k) x(k)T}

The continuous random disturbance 3' given in Eq. (7) will be replaced
by an equivalent discrete random disturbance w, whichk is a white

Gaussian noise process with

0

Elw(k)]

Elw(k) w' (K)]

"

Q{k) . (15a)

The value of Q(k) is a function not only of the time k, but also of
the sampling interval At., If the continuous ncise ﬁ, has a covariance
given by E[w/(t) E'T(c)] =Q'(t) §(t - @), where §(-) 1is the Dirac
delta function, then in the discrete-time form of the missile's dynamical
model, the discrete noise w will have (if this model is linear) a co-

variance given by
QX = Q') At . {15b)

The initial state 5(0) is assumed to Le a Gaussian random variable

with
E{x(0)] = %(0/0)
E[{x(0) - £(0/0)}{x(0) - %(0/0)} ] = P(0/0) . (16)
Furthermore, it is assumed that !(k), w(k), and 5(0) are mutually
uncorrelated.

The resulting estimation equations, which are given by the extended
Kalman filter, can be considered as consisting of two parts: prediction

and correction.
1. Prediction

Given 2X(k/k), the estimate of the state at time k, and the
assumption that E[w(k)] = 0, the predicted state can be obtained from

%
the nonlinear equations of motion (7):
R(k+1/K) = R(k/K) + £{R(k/K) )AL an

with the covariance of the error in the state prediction &(k+1/k) given by

*
More accurate integration formulas can be used if necessary.

9
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PCk+1/K) = 3(k+1,k) P(k/k) 3°(k#1,K) + Q/(K) At, (18)

where &{k+1,k) is obtained by linearization of Eq. (7) about the
state estimate X(k/kK)--i.e.,

#(k+1,k) = I + FlRk/®]Jat (19)

in which F is the 7 x 7 matrix with components

afi(gg)
4 = . 0 f
Fij(ﬁ) 3% (20) ;
J ‘>
From Eq. (6), B
K 0 0 1 0 0 0 3
0 0 0 0 1 0 0 )
0 0 0 0 0 1 0
of . :
Fa j—| =| F F F F F F F (21) E
. axj 41 42 43 44 45 46 47}’ 2
Fou Fsa Fsz Fog Tss Tse  Fs7 4
For Fe2 Tez Tea Fes Tes  Ter
4
F 71 F72 F 73 F 74 F75 F76 F77 l
where %
' 2 -1 2 -3
= - . + 3 .
F41 w g 11 3 g ‘{1 1 1 !
-3 8
Fgp=38x %1
F = 3 x. ( + r )1'-3
43 T 0 B X WXy T EIN
2 -1
Faa=~ dxyeV-tx g %,V
4 F 2 . »? é "'l
45:(951:\.,- x7gox4xsv
- F_=-2wmcos L -3x_ g X, x vl
46 7 8 "4 %6
Fgp =~ 3V x, g
10
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F =-x7l{r

(x_ +
76 ix ro)

1 3

..1
= - + + + .
F77 K rl [x1 x4 x2 x5 (x3 ro)xel

2. Correction

The state prediction X(k+1/k) 1is then corrected by using
z(k+1), the actual measurement at time k+l, and Z(k+1/k), the pre-
dicted measurement for time Kk+1, which is obtained from the nonlinear

measurement equation (12) by using the assumption that Elv(k#¥1)] = 0:
2(k*1/K) = hlR(k+1/K) ] . (22)
Hence, the estimate of the state at time k+l 1s given by
R(k+1/k+1)= R(k+1/K) + Wk {z(k+1) - 2(k+1/K)] (23)
where the welghting matrix is
W(kt1) = P(k+1/KH! (k1) [R(Kk+1) + H(R+DP(RH/OE (1) )™ (29)

and H(k+l) is obtained by linearization of Eq. (12) about the state
prediction X(k+1/k)--i.e.,

H{k+1) = H[X(k+1/K)] , (25)
in which H is the 3 x 7 matrix with components

3h, (x)

(26)
H X - .
3@ =5
[V
From Egs. (8) through (11),
le H13 0 0 0 0
CLY 27
= j=—=] = 0 0 0 ,
H axj H22 n23 0
H32 H33 o 0 9 0
where the Hij are most conveniently written in terms of the radar face
7 14 / .
coordinates xl, x2, xa.
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cos £ + -2 -
g = sin 7 sin €

N~

cos 7 sin €

3
[(xé)z + (xé)z] cos €

x! 3
;],'- l.fxé)z + (xé)z] cos t sin &

3
l—:(xj'.)2 + (xé)a:] sin v sin £

!
b3

2 2 3
-= [-(x{) + (x')2] cos t sin &
X, e 3 )

3

x! ’ ’

1 *2 *3

--r—sing +—r—sin1- cos & +—r-cos T c0s €

- l:(xz')2 + (xé)z]i sin g
x! 3
-;l [(xz")z + (x:‘;)z:l cos T sin €

3
[(x;)2 + (xé)z-’ cos € sin 7

/
x
2 3
--?- [(x{) + (x:;)2] cos T cos £
X
3
’ /
X X
2 3
= cos T + Y sin r
4
x
1 2 273
-— I:(x.,;) + (xé) ] sin 7
X3

- [(xi)z + (x:;)2]i cos T

2
2 [(Xi) + (x:;)ZJi sin T

3
[ + 0 + (xé)ZJ :
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For use in Eq, (27), the values of x/, xé, x! are determined from the

1l 3
state prediction g(k+1/k) by the linear transfermation M 1, where M

is given in Eq. (9):

xi f-ﬁl(k/k-l) T
! - % k=

Xg | o 2| R | (28)
/7 A

Xq xa(k/k 1)

The covariance of the error in the estimate §(k+1/k+1) is

P(k+1/k+1) = [I - W(k+1)YH(k+1) JP(k+1/k)

P(k+1/k) -P(k+1/k) HT(k+1) [R(k+1)+H(k+1)P(k+1/k)HT(k+1) ]“1

H(k+1) P(k+1/k) . (29)

Equations (17), (18), {(23), (24), and (239), together with the
matrices defined in Eqs. (19) and (25), comprise the extended Kalman
filter, The a priori state estimate 2(0/0) and its error covariance
P(0/0) are used to initialize these recursive equations. The measure-
ment noise covariance R 1is specified by the characteristics of the
phased-array radar model, The random disturbance covariance Q is
determined in order to compensate for inaccuracies in the model of the

equations of motion (see Secs. V and VI),

It should be noted that in the extended Kalman filter, the
nonlinear equations {(7) and (12) are used to obtain the state prediction
[Eq. (17)] and the predicted measurement [Eq. (22)], respectively. The
linearization of Egs, (7) and (12), used to obtain & and H, is only
employed to calculate the covariances and the weighting matrix in

Eqs. (18), (24), and (29).

B. Basic Flow Diagram

The basic equations of the extended Kalman filter (see Sec. III A)
can be displayed in the form of a flow diagram, which is a simplified
pictorial representation of the digital computer program that has been
developed, This 1s shown in Fig. 2, where kmax is the maximum number
of times that the filter processes the measurements. Thus, there are
seven major computations involved in each filtering iteration--as in-

dicated by the seven numbered blocks in Fig. 2 (these will be referred
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INITIALIZE FILTER:
AT k = 0, INPUT
£(0/0) and P (0/0)

(D) [CALCULATE LINEARIZED DIFFERENTIAL - EQUATION MATRIX,
: fl%

EQ. (21): F o An]_[a fs(*/k)l]
X

: .

CALCULATE TRANSITION MATRIX, EQ. (19):

®

D1,k = I+Fat

!

CALCULATE PREDICTED STATE, €Q. (17):

ks 1K) = Fh/k)+ HERANA

—

CALCULATE ERROR COVARIANCE IN PREDICTED STATE, EQ. (18):

NEXT ITERATION:

keked P+ 1/k) = Ok + LXPR/K®T(k + 1.k} + Q(k)

!

CALCULATE WEIGHTING MATRIX, EQS. (24) AND (27):

RANDOM
DISTURBANCE
COVARIANCE:

Q(k)

Wik+ 3) = P(k+ 1K HTK + 1R(k + 1) + Hik + 1P(k + VigHT(k + 1)

!

CALCULATE STATE ESTIMATE, EQ. (23):

®©@ ® 6 O

MEASUREMENT
NOISE
COVARIANCE:

Rik + 1)

A+ Vs 1) = Bs1/K) + Wik D 2k + 1) - 2k + /%))

.

@ CALCULATE ERROR COVARIANCE IN STATE ESTIMATE, EQ. (29):

Pk + 1/k+ 1) = [I~Wk+ WHk+ DIPK + 1/k)

; NO 3 YES
k = kMAX STOP

‘ FIG. 2 FLOW DIAGRAM FOR EXTENDED KALMAN FILTER
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to as Steps 1 through 7). Since the state vector of the ballistic

missile has seven components, some of the calculations shown in Fig. 2

require considerable computation time.

In the next section, the contribution made by each of the seven s
basic calculations to the total computational time for one filtering R
iteration will be found. These timing estimates provide the basis for
making modifications in the filter design to decrease the average compu-

tation time per iteration.

C. Computation Time Considerations

In a previous study,1 when the extended Kalman filter eguations
were implemented on the IBM 7090 for endoatmospheric trajectory estima-
tion, the filter ran approximately 6 times slower than real time with a
data rate of 20 measurements per second (for a single target); i.e., it
took 6 seconds of computer time to process the measurements obtained in
1 second. Since the speeu of the Kalman filter is computer-dependent,
one can improve the speed with a faster computer. In fact, with the same
data rate of 20 measurements per second, the Univac 1108 runs approxi-
mately 5 times faster than real time (for a single target) for endo-
atmospheric estimation. Even at five times faster than real time (for
a single target), the speed of the extended Kalman filter may still be
inadequate for some situations. Fer instance, if n missiles must be
tracked and if the speed of the Kalman filter is 5 times real time,
then for n > 5, the filter cannot compute state estimates for all of
the n missiles in real time (at a data rate of 20 measurements per
second),

For exoatmospheric trajectory estimation (for which the filter has
six states instead of seven and is programmed in double precision--see
Sec., VI), the Univac 1108 runs approximately 100 times faster than real
time (for a single target) with a data rate of one measurement per
second,

Thus, particularly in a multi-threat situation for endoatmospheric
estimation, it is essential to improve the computational efficiency of
the extended Kalman filter, This should be done with a minimal amount

of degradation in filter performance, For ballistic-trajectory

16
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estimation, where the dynamical description is given by Egs. (6)., (7),

and (12), we know the particular structure of the linearized differential-

equation matrix ¥, the transition matrix ¢, the linearized measurement

matrix H, the random disturbance covariance Q, and the measurement-

noise covariance R. Therefore, we can take advantage of this knowledge

by writing a computer program, which reproduces the flow diagram (Fig. 2)

in a computationally efficient manner.

In the extended Kalman filter program, which has been developed,

the seven major computations per iteration given in Fig. 2 involve

*
various numerical operations as listed in Table I.

Table |

ARITHMETIC OPERATIONS FOR THE EXTENDED KALMAN FILTER

(ENDOATMOSPHERIC CASES)

COMPUTATIONAL NUMBER OF NUMBER OF
OPERATION MULTIPLICATIONS ADDITIONS NUMBER OF
OR OR SQUARE ROOTS
(see Fig. 2) DIVISIONS SUBTRACTIONS
CALCULATE LINEARIZED DIFFERENTIAL-
EQUATION MATRIX, EQ. (21) 8 3 2
CALCULATE TRANSITION MATRIX, 28 5 0
EQ. (19)
CALCULATE PREDICTED STATE,
N 30 17 0
CALCULATE ERROR COVARIANCE 693 593 0
IN PREDICTED STATE, EQ. (i8)
CALCULATE WEIGHTING MATRIX, 10 65 0
EQS. (24) AND (27)
CALCULATE STATE ESTIMATE,
EQ. (23) 2 2 0
CALCULATE ERROR COVARIANCE IN 47 147 0
STATE ESTIMATE, EQ. (29)
TOTALS 1110 1002 2

* .
Table I applies to endoatmospheric estimation; for exoatmospheric
estimation, a comparable table could be obtained.
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The enumeration of arithmetic operations in Table I gives an indication
of the distribution of the total computation time per iteration among
the seven basic calculations. For instance, if it can be assumed that
the operation of multiplication (or division) requires a computation
time of an order of magnitude larger than that for an addition (or
subtraction), then the calculation of the predicted error covariance
(Step 4) takes about 63% of the total computation time. Clearly, the

error covariance matrix calculations of Steps 4 and 7 are the most
involved.

The next section discusses various approaches that may be used to

modify the Kalman filtering algorithm in order to reduce the computational

requirements. Particular emphasis is placed upon simplifying and modi-
fying the two error covariance calculations, since they are the most

time~consuming calculations in the Kalman filter.

D. Approaches to Reducing the Computational Requirements

One approach to reducing the computational requirements of the

Kalman filter was discussed in detail in Ref. 1. There an approximation

to the weighting matrix W(k) was precomputed off-line, rather than

calculated recursively on-line. The weighting matrix values for repre-

sentative trajectories are then stored in the computer memory. The

precomputed weighting matrix technique has some disadvantages. First,

the weighting matrix W(k) not only is a function of the iteration time

k, but it also is altitude-dependent. Second, W(k), even for the same

altitude, is dependent to some degree upon the geometry of the trajectory

and the ballistic coefficient (at lower altitudes). Consequently, for

accurate estimation, many representative weighting-matrix histories

should be stored in memory and employed accordingly. The computational
advantages of the Kalman filter using a precomputed weighting matrix are
impressive, however. In fact, for endoatmospheric estimation, the speed

of this filter is approximately 15 times that of the fully implemented
Kalman filter,

Another approach for improving the real-time capability of the
Kalman filter is to decrease the data rate until it falls within the

filter's real-time capability. One disadvantage of this appreoach is that
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the estimation is based upon less data and, thus, is inherently less
accurate. As At, the time between measurements, is increased, the
calculations yielding &(k+l,k) and X(k*1/k) should be refined so
that their accuracy is not impaired; these refinements consume some of
the computational speed galned by decreasing the data rate. Additionally,
the linearization assumptions for the extended Kalman filter may no
longer be valid for large values of At. Clearly the speed of the Kal-
men filter relative to real time is proportional to At, so that if the
filter is 6 times slower than real time for a data rate of 20 measure-
ments per second (At = 0.05 sec), then it will be faster than real time
only for data rates less than 3,33 measurements per second. In Ref. 1,
it was shown that the performance of the extended Kaiman filter for
endoatmospheric estimation was not markedly affected when the data rate
was decreased by up to a factor of 5 from a basic data rate of 20
measurements per second. Some further results on this approach will be

presented in Secs. V and VI,
IV  PIECEWISE-RECURSIVE KALMAN FILTER

In this study we have combined the advantages of both of the
approaches discussed in Sec, III D, The filter algorithm considered
here calculates the weighting matrix W(k+l) every Ar seconds, arnd

uses this weighting matrix for calculating the state estimate 3(1/1)

k+N, wh 8T _Na21
o0 0 ,Were At— .

This is equivalent to calculating W{(k+1l) at time k+1 and retaining

at intervals of At sec for i = ktl, k+2,

this value of the weighting matrix (to be used in computing the state
estimate) for the times k+l, k+2, ..., k+N, and then calculating
W[k+(N+1)} anew, The design parameters of the filter are then At, the
sample interval (data processing interval), and A~, the interval between
weighting-matrix calculations. This filter has a "piecewise~-precomputed”
weighting matrix and its data rate may also be varied., Thus, the computa-
tional advantages of both precomputation and data-rate reduction can be
achieved. This algorithm also avoids the off-line nature of a Kalman filter
that uses a precomputed approximation to the weighting matrix; in this
approach, the weighting-matrix calculations are perfommed recursively at
intervals of Ar seconds. This computational algorithm, which will be

referred to as the Piecewise-Recursive (Extended) Xalman Filter, will he

described more completely below,
19
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The modified Kalman filter algoritihm described above operates as
follows: In the first cycle, the equations for the state prediction
gnd estimate are computed just as they are for the fully implemented

Kalman filter [see Sec. III A, Eqs. (17), (22), and {(23)],

n

R(k+1/K) = R(k/K) + £LR(K/K) [at (30)

X(k+1/k+1)

1t}

R(k+1/K) + W) [z(k*1) - B(k+1/K) ] (31)
k=0, 1, ..., K-1

The weighting matrix W(1) for these N iterations is obtained from
Eqs. {18) and (24),

2(1y = PAL/OYHT (D) (R(L) + H(D) PA/OHE M (32)

where

P{1/0) = %(1,0} P{0/0) %T(l,O) + Q(0)at (33)

and

$(1,0) = 1 + F{%(0/0)iat .

The calculations in Steps 1, 2, 3, 4, 5, and 7 of Fig. 2 are not done
for k=1, 2, ..., N-1L,

Before proceeding to the next cycle, this algorithm requires that
P(N/N), the covariance of the error in the state estimate E(N/N) at
the end of the previous cycle, be computed. As shown in Ref, 6, this

*
covariance can be obtained by solving the recursive relations:

P(k+1/k+1) = {I - W(LH(k*1)! P{(k+1/k) (I - W(1)H(k*1)]
& WO RK+1)W (1) (34)
T
P(k+1/K) = 3(k+1,K)P(k/K)& (k+1,k) + Q' (K)At (35)

k=0,1, ..., N-1

However, this calculation of P(N/N) defeats the very purpose of the

piecewise~recursive Kalman filter--namely, to reduce the computation

*
These relations exactly define the propagation of the covariance for
either optimal or sub-optimal values of the weighting matrix,
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time. Therefore, simplifications for or approximations to Egs. (34) and
(35) are essential,

The approximation made here is that we can consider the filtering
done at the times k =1, 2, ..., N as constituting a presmoothing of
measured data. In effect, it can be assumed that at the end of the time
interval [0, Ar], where k = N, one measurement (with an appropriately
reduced noise covariance) is processed. It can be shown that for the
most optimistic conditions this reduced measurement noise covariance is

given by

X)

R = : (36)

zli';‘

where R(N) is the average value of the measurement-nolse covariances
for the times k=1, 2, ..., N (AT = NAt); for practical purposes,
R(¥) 1is taken to be equal to R(N), It is asserted that R*(N)
represents (approximately) the effective measurement noise over the

interval [0, Ar], if all N measurements are processed by the Kalman
filter.

Using this reduced measurement-noise covariance, P(N/N) is then

determined [see Sec, III A, Eqs. (18) and (29)] from the equations

PO/ = P/0) - P/0) H 0 [ B 4+ 5w pav/o) B w17}

N
« H(N) P(N/0) , (37
where
P(N/0) = &(N,0) P(0/0) & (N,0) +Q’(0) Nat 58)
and
5(N,0) = I + F[%(0/0) JNAt .

This approach avoids the recursive solution of P(N/N) and has been

found to yield satisfactory filter performance as shown in Secs. V and
VI,

At k = N, the cycle is repeated; i.e., the state prediction and
estimate are given by

R(k+1/K) = R(k/K) + £{R(k/K)]At (39)
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R(k+1/k+1) = %(k+1/K) + WN+1) [2(k+1) - 2(k+1/K) ] (40)

k

N, N+1, ..., 2N-1 .
The weighting matrix W(N+l}) for these N iterations is obtained as
. . T -
WN+1) = P(N+1/N) H (N+1) [R(N+1) + H(N+1) P(N+1/N) HT(N+1)] 1’ (41)

where

P(N+L/N) = &(N+1,N) P(N/N) 3L (N+L,N) + Q°(N)at (42)

and

P(N+1,N) = I + FIRO/M) )AL .

Again, the computations in Steps 1, 2, 4, 5, and 7 in Fig. 2 are omitted
for k = N+1, N+2, ..., 2N-1., Next, P{2N/2N), the covariance of the
error in the state estimate X(2N/2N) at the end of this cycle, is cal-

culated from

-1
P(2N/2X) = P(2N/N) - P(2N/N)H' (2N) l——“‘fj" + H(2N) P(2N/N)HY (2 ]

+ H(2N) P(2N/N) ) (43)
where
P(2N/N) = &(2N,N) P(N/N)@T(zN,N) + Q/(N)Nat (44)
and
$(2N,N) = I + FIR(N/N) [Nt

Whenever k is a multiple of N, this cycle is repeated in the

manner outlined above.

The use of the piecewise-recursive Kalman filter results in a
reduction of computational requirements whenever N > 2 (i.e.,
Av > 2 At)., The reason for this is that the modified algorithm nearly
doubles the number of numerical calculations, with respect to the
basic Kalman filter presented in Fig. 2, whenever k is a multiple of
N; but for the next N-1 sample points, the filter's weighting matrix
is fixed so that the number of numerical calculations is very small for
these iterations. Thus, there is no computational advantage of this

algorithm unless N 2 2,
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The expected decrease in the computational time for the piecewise-
recursive Kalman filter is a function of the size of At relative to
At, as well as the value of At. Let SO be the ratio of the compu-
tational speed of a Kalman filter using a precomputed weighting matrix
to the computational speed of the fully implemented Kalman filter at
the same data rate (So is independent of the sample interval At).
Since the piecewise~recursive Kalman filter described above is equivalent
to using a precomputed weighting matrix for N-1 iterations (where
N = Atr/At) before a new weighting matrix is computed, this filter is So
times faster than the fully implemented Kalman filter for these N-1
iterations, As shown above, for the first iteration of each cycle of
N iterations, the piecewise-recursive Kalman filter is approximately
twice as slow as the fully implemented Kalman filter. Thus, if Atx is
the computational time consumed by the fully implemented Kalman filter
for one iteration, then the time consumed by the piecewise-recursive
. Kalman filter is approximately 2AtK if the iteration is the first in
the cycle of N iterations, and AtK/So if the iteration is one of
the remaining N-1 iterations before a new weighting matrix is calcu-
lated.

Since the total computational time for N data points with the
fully implemented Kalman filter is NAtK, and with the piecewise-recursive
Kalman filter it is 2AtK + (N-1) AtK/So, it follows that the ratio of

their average iteration times is approximately

2AtK + (N-1) AtK/So

. (45)
N AtK

Thus, the speed of the piecewise-recursive Kalman filter, relative to
the fully implemented Kalman filter, is approximately

. NS

[¢)
x % |+ oD (46)

If the speed of the fully implemented Kalman filter relative to

real time {(when the sample interval is Ato) is S_, then its speed

R!
relative to real time when the sample interval is At will be

23




At
SR K{:— . (47)
o
Consequently, the speed of the piecewise-recursive Kalmar filter with

respect to real time will be approximately

As an illustration of the expected computational advantages in
endoatmospheric estimation of such a filter design using the Univac 1108
at a sampling interval of Ato = 0,05 sec, the fully implemented Kalman
filter is about 5 times faster than real time (i.e., SR = 5); Table 3
indicates that the speed of a Kalman filter using a precomputed weighting
matrix relative to the fully implemented Kalman filter is about 15
(i.e., So = 15). Incidentally, it should be noted that SR is computer-

dependent, whereas So is not. Thus, for the endeatmospheric estimation

on the Univac 1108, S At is given by
15N
. 9
< > 30 + (N-l):] (49)
Note that SN At’ the speed of the piecewise-recursive Kalman filter
H

relative to real time, increases linearly with At; for fixed At it is
bounded by the speed of a Kalman filter with a precomputed weighting

matrix.

To obtain some measure of the improvement in the computational
speed for the endoatmospheric cases, let us calculate, using Eq. (49},
the iteration times for various values of N = %%
for one iteration on the Univac 1108 is given by At/S

. The average time
N,At; thus, for
N =5, 10, 20, and 30, we obtain the average iteration times of 0.0045,
0.0026, 0.0016, and 0.0013 sec, respectively. (Recall that the iteration
time for the fully implemented Kalman filter is 0,0100 sec.) These
estimates of the average iteration time for the piecewise-recursive

Kalman filter are in very close agreement with the actual values found
experimentally as will be shown in Sec, V, For exoatmospheric estima~
tion, the average iteration times of the piecewise-recursive Kalman
filter (for various values of N = %E ) are given in Sec. VI.
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In Secs. V and VI, we will verify the expected computational ad-
vantages of the piecewise-recursive Kalman filter and investigate the
perfomance of this filter for endcatmospheric and exoatmospheric esti-
mation,

Since the piecewise-recursive Kalman filter algorithm essentially
employs a welghting matrix whose elements are piecewise-constant
functions of the time Kk, one could theoretically determine the optimal
values of the weighting matrix elements, subject to this piecewise~
constant constraint, This appears to be a difficult problem to solve
analytically., The piecewise~recursive Kalman filter described here can

be considerad as an approximate solution to this problem.

V N  RICAL RESULTS FOR FNDOATMOSPHERIC TRAJECTORY ESTIMATION

A. Description of the Test Cases and Filter Design Parameters

Data from two representative endoatmospheric trajectories generated
by simulation using an accurate model of reentry dynamics® was used to
evaluate the performance of the piecewise~recursive Kalman filter des-
cribed in Sec, 1IV. The computer program used in generating these

trajectories was developed by M,I,T, Lincoln Laboratory.

The reentry angle for both trajectories is approximately 220,
Case 1 is a trajectory of a high~f missile, which is tracked starting
at an aititude of about 205,000 ft. This trajectory impacts approximately
at the radar site, Case 2 is a trajectory of a low-8 missile, which is
tracked from an altitude of about 153,000 ft, This trajectory impacts
about 80,000 ft east and 30,000 ft north of the radar site, Cases 1

and 2 are essentially the same as Cases 1 and 4, respectively, of Ref. 1.

The filtering computations start with an initial state estimate
X(0/0) and its error covariance matrix P(0/0). The initial state
estimates for the endoatmospheric cases, generated as in Ref., 7, are

given in Table 1I,

Based on the work presented in Ref., 1, the initial error covariance
(for the endoatmospheric trajectories) is chosen to be the 7 X 7

diagonal matrix




P(0/0) = 10 . (50)

10

106

21

5 x 10

The measurement-noise covariance R{k) 1is obtained from a model of
actual radar noise characteristics of the MSR based on work by Bell

Telephone Laboratories.®

The expressions for the elecents of this co-
variance are found in Ref., 9. This radar model is used to generate the
measurement noise of Eq. (12) in the simulation, Observations may be
taken as often as every 0.05 sec for the endoatmospheric cases, but the

filter may process fewer measurements than are taken (i.e., At 2 0.05

sec) .
Tabie [l
INITIAL CONDITIONS FOR ENDOATMOSPHERIC TRAJECTORIES
xy X2 x3 Xy X Xg X7
{ft) {f1) (i) (f1/sec) | (f1.'sec) | (ft. sec) (ib. #12)
CASE 1
ACTUAL x(0) 338110 | 338110 | 199910 15297 15297 8653 4.395 x 10- 1

ESTIMATE. X (0/0) | 290952 | 292135 | 199911 | 16046 | 14466 12751 | 6.118 x 10-10

ERROR 47158 45975 1 749 831 4098
CASE 2
ACTUAL x(0} 80000 360440 | 149910 0 21633 8653 7.950 x 1077

/ ¢-9
ESTIMATE %G 0) | 80093 | 318857 | 149842 | 1187 20891 | M52 | 2376 x10

'ERROR’ 93 41583 68 1187 742 2939
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The random disturbance covariance Q(k) [see Eqs. (152) and (15b)},
compencates for the model inaccuracies as described in Sec. 1I A. Based
on studies described in Ref. 1, this covariance (for the endoatmospneric

trajectories) is chosen to be the 7 X 7 diagonal matrix

< -
4]
]
k
1 _o'w - 50 , (51)
50
50
Q77(k{
where
1 ~19 -
3.2x%10 5 x32160000
-18 . N
1.0x10 ,900005x3<160000
Q77(k) = 2.2x10—15exp(-5x10~5ﬁ3) ,250005§3< 95000
-15 -3 4 , -5. - ~ -
2.2x107 °[1+1.5x107° (2.7x10"-%,) Jexp(-5x10 " %,) , 14700k < 25000
3 .6x10 Y4141, 5x1073 (2. 7% 104—$<3) Jexp(-5x 10'5§3) , 2,< 14700
and is is the present vertical distance estimate.

B, Performance of the Fully Implemented Extended Kalman Filter

For the endoatmospheric trajectories, the standard which is used to
evaluate the performance of the piecewise-recursive Kalman filter is the
fully implemented (extended) Kalman filter with a sample interval of
At = 0.05 sec. The recursive equations for the extended Kalman filter
are given in Sec, III A, This filter was used to estimate the ballistic
trajectories for Cases 1 and 2 using simulated trajectories and wmeasure-
ment noise. The filter yields state estimates X(k/k) at sample

intervals of At = 0.05 sec.

The magnitudes of the measurement errors in position are shown in
Figs. 3a and b for Cases 1 and 2. In order to relate altitude and time,
these magnitudes are plotted as a function of both variables; in ali

other figures, the plots are a function of time only. Figures 4a, b,

and d show the magnitudes of the estimation errors for position, velocity,

27
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and acceleration, respectively, for Case 1. Figure 4c shows both

actual and estimated B, where the estimated B 1is obtained by assuaing
B(k/k) = olb(k/K) /% (k/K) in which H(k/K) 1s the estimated altitude
obtained from Eq. (2). It should be noted that acceleration is not
computed directly by the filter but is caleculated from the state esti~
mate using Eqs. (1) of Sec. II A, Figures 5a, b, ¢, dand d show the

corresponding estimation errors for Case 2.

Note that after 3.5 sec of filtering, tlhe magnitude of the errorsg
in estimated position in both cases is never any worse than 830 ft (and
in Case 1, the initial position error is approximately 65,000 ft),.
After 3.5 sec, the magnitude of error in estimated velocity ia both
cases is never any worse than 285 ft/sec, The magnitude of error in
estimated 8 for Case 1 is never more than 665 lb/ftz, and for Case 2
it is never more than 105 lb/ft2 after 3.3 sec of filtering.

C. Performance of the Fully Implemented Extended Kalman Filter with
Different Data Rates

The simplest scheme for improving the real-time capability of the
Kalman filter is simply to decrease the data rate. If the sample
intervals are lengthened and the additional time between samples is not
used to presmooth the measurements (i.e., the intermediate measurements
are discarded), then obviously the filter performance will deteriorate
to some extent. Reference 1 discusses the performance of the extended
Kalman filter for four representative endoatmospheric cases. However,
no attempt was made in Ref, 1 to investigate the effect of both decreasing
the data rate and presmoothing the intermediate measurements. The present
study considers the situation where the presmoothing is done by fitting
the data to a curve that approximates the trajectory of the ballistic
missile, Of course, in practice, data is presmoothed by curve-fitting
with polynomials that are not precise representations of missile tra-

Jjectories,

The assumption of data presmoothing implies that in the filter
equations the measurement-noise covariance should be reduced accordingly.
If the measurement-noise covariance at a particular time is R° (k) for

a sample interval of Ato, then one approximation to its reduced value,

30
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with a larger sample interval At and with presmoothing, is
At

R(k) = B°(Kk) 755 . To see how this is derived, suppose that the measure-~
ment vector is a linear function of time ti in the interval [tp,
t, * At] with additive noise vy {i.e., 2, =P + sti + vi), and its
rate of change, s, at t = tk is known (equivalently, our estimate
of the velocity 5 equals its actual value), Now, we estimate the
unknown parameter p by subtracting sti from the measurements at the

=t , + + 24t seay tF =
times t1 K tk Ato, tk 247 o’ s At  (where At n Ato)

and average the resulting quantities., Let T designate the computed

Fog

average aud Z(tk + At) = p + s(tk + At) be the presmoothed version of

the measurement z(tk + t), where v, is zero mean,

i

Noting that E[B} = p, the covariance of Z is seen to be given by

Ef z - E[zD z - B(zD )

L]

Ef @ - E[BD G - E[F T

G -G -ph

]

u

n n
M%§<p+%>-ﬂg E o+ v) -l

n n 1=1
e -
=5{*1§ LE vi) ‘ EV.>T3
n 1=1 ~j=1 3
y B T, T
== L E{lv, v.] , since Elv, v.] = 0 for i#j
13 iV
n i=1
Ro
*="n
Ato
= Ko —A—E' s (32)

where R°, the covariance of the measurement noise v is assumed

i’
constant over the interval [tk, b+ At).

In the computer simulations done for this report, the presmoothing
of the measurements was simulated by scaling the measurement noise by
the factor\/ Ato/At . This corresponds to decreasing the measurement
nolse covariance by the factor Ato/At. It should bc noted that this

presmoothing assumption is overly optimistic,

The estimation error plots of Figs. 6 through 11 illustrate the
effects of data presmoothing upon the extended Kalman filter's performance

for Case 1. Figures 6, 8, and 10 show the effects of increasing the

32
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sample interval (decreasing the data rate) from At = 0.05 sec to At = 0,10,
0.25, and 0.50 sec, respectively, when no data presmoothing is done. In
other words, the filter's data rate is decreased by processing fewer mea-
surements in any given time, Figures 7, 9, and 11 show the effects of
increasing the sample interval of the filter from At = 0.05 sec to At = 0,10,
0.25, and 0.50 sec, respectively, while also using the increased time be~
tween samples to presmooth the measurement data., The presmeoothing assump-
tions described above are used for the results presented in Figs, 7, 9,

and 11.

Figures 6, 8, and 10 indicate that if presmoothing is not done the
estimation errors become increasingly larger as the filter's sample
interval At 1is increased, However, Figs. 7, 9, and 11 indicate that
if the data is presmoothed the position and velocity estimation errors
generally decrease with increasing At. Thus, the reduction of the
measurement noise through presmoothing is beneficial in position and

velocity estimation.

The random disturbance covariance Q(k) given by Eq. (51) is
seen to increase linearly with increasing At. For ballistic coefficient
and acceleration estimation, this increase in Q(k) apparently domi-
nates the decrease in the measurement noise covariance R(kK) when the
data is presmoothed. That is, the errors in the B8 and acceleration
estimates, as shown in Figs, 7, 9, and 11, increase with increasing At,
even with presmoothing of the data. Hence, increasing the sample
interval generally leads to a detericration in ballistic coefficient
and acceleration estimation. This is to be expected since the square
root of Q77(k) {see Eq. (51)], which is the standard deviation in the

assumed random disturbance noise affecting x_,, is of the same order of

7
7} whereas, the standard deviation
of the posit’on disturbance noise is zerc, and the standard deviation of

magni’ude as the actual values of x

the velocity disturbance noise is very small in relation to the actual
velocity values [see Eq. (51)]. Since the ballistic coefficient 8 1is
derived from x,_ (i.e., B8 = p/x7), the random disturbance affecting

7

x7 is of major importance in estimating B. Consequently, since Q77(k)
increases linearly with the sample interval At with or without pre-

smoothing, it follows that B estimation errors are expected to increase
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with increasing At. In turn, the errors in ballistic coefficient estima-~
tion lead to errcors in the estimate of acceleration, since the acrodynamic-

drag accelerations are in error.

For Case 1, the pairs of Fige. -6 and 7, 8 and 9, 10 -and 11 illustrate
the extended Kalman filter performance, with and without data presmoothing;
for sample intervals of At = 0,10, 0,25, and -0.50 sec, respectively. As
noted .above, the presmoothing assumption of Eq. (52) is optimistic; and
for a given At, the filter estimation errors for actual presmoothing will
be somewhere .between the errors given in the corresponding pair of figures.,
Thus, for the particular simulations presented here, we have bounded the

filter estimation errors :for different values of At.

Figures 12 a, b, and ¢ show the standard deviations in the: estimates
of position, veélocity, and 3 as computed from the .diagonal -elemeénts of
the caléulated estimation error covariance [Eq. (29)], Each of the Figs.
12 a, b, 4and -c shows. two curves: Curve (i) is the calculateéd standard
deviation when data is nct présmoothed, and Curve .(ii) is the calculated
standard deviation when- presmoothing has been. performed; these plots are
for Case 1, with a sample interval of At = 0.25 sec. The standard
deviation in position .error is calculateéd.as the. square root of the sum
of the first three diagonal .elements. of the filter covariance matrix,

P(k/k). That is, the standard deviation of position error is given by

glpi,‘* P22 ¥Pp__ . Likewise, the standard deviation of velocity error

33
is calculated as /P, + Pss +

44 PGGl' The standard deviation for the
error in B estimation.- is calculated using a rough approximation, The
ballistic coefficient B is not estimated directly, but is derived from

§7. Since x7 is defined as X, = p/B (with p = mass density of the

atmosphere), it follows that B = p/x7. To first order, we have

8 -8=—L x
7)
so that a rough approximation for the standard deviation of § is

8 ] P—-!
G )2 77 !
%7

in which P77 is the seventh diagonal element of P(k/k) and 6 = p(h),

The standard deviation plots of Fig. 12 a, b, and ¢ provide a

valuable measure of the filter's performance. For instance, if the
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:magnitude of the jposition estimation error differs significantly from.

‘thé - .calculated -standard ceviation of the position-error [SSféphputed

from ‘P(k/K):], then the filter i$ doing the estimation. task. poorly--
perhaps. because of indccurate.miodeling-of the missile dynamics or

measurement noise in the filter equations. Also, when presmoothing of

the measuréfents leads to d reduction in the magnitude of the .éstimation

érrors, thé calculated: standard déviations should.also Show a rfeduction.

Figure 12 shows fhat the calculatéd standard deviations [derived from.

P(k/k)] are in correspondence with thé actual éstimation error .magnitudes

(both with and -without ‘presmoothing) .. Also, the standard deviations in

position -and velocity estimation errors are reduced (as-expected) ‘when
data is presmoothed. Comparison.of Figs: 8 and 9 with Fig. 12 reveals

that the actual estimation errors are léss than. two standdrd deviations

for almost all of the filtering time,

Figures 13 'a; b, and c show the Standard deviations: in- position,
velocity, and B8 estimation errors for (i) a sample: interval of ‘0,05
sec, and (ii) a sample 'interval of 0,50 sec; CurVes (i) 'and (ii) -dre for
Case 1 with no data presmoothing. Again, the standard deviation plots;
agree with the actual estimation error magnitudes. ~For 'instance,
comparison of Figs. 4 and 10 -with Fig. 13 shows that ‘the position esti-
mation error maghitude increases when At is increased from. 0,05 ‘se¢ to
0.50 sec, but this is to be expected sinceé, with no présmoothing, the

calculated position standard deviation '(Fig, 13:a) also increases.

Figures 14 through 19 show the estimation error magnitudeés:wihen
thé sample interval length is increased from At = 0.05 sec to At = 0.l10,
0.25, and 0,50 sec for Case 2, Estimation error magnitudes are pre-
sented for the situation where there is presmoothing of measurements and
also where there is no presmoothing.. The conclusions are similar to

those drawn for Case 1 from Figs. 6 through 11,

Figure 20 shows the effect of presmoothing upon the calculated
standard deviations of the estimation errors for a sample interval of
At = 0,25 sec in Case 2, Again, the conclusions are the same as those

drawn for Case 1 from Fig. 12,
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Figure 21 shows the effect (for Case 2) upon the calculated
standard deviations in the.estimation errors of decreasing the data rate.
The plots show. the effect -of decreasing the data rate from 20 measure-
ments per second to 2 measiurements per second--when there is. no measure-
ment presmoothing. Again, the conclusions are the same as those drawn

for Case 1 from: Fig, 13.

‘A recent stgdy6 discusses the sensitivity of ‘the Kalman- filter
performance to changes in the sample interval At. In particular, the
effects of data presmoothing are discussed there. It was shown that the
.presmoothing assumed here tends .to be overly optimistic; since any
change of the -noise assumptions tends to -.cause the filter performance  to

deteriorate from its performance with the assumed presmoothing [Eq. (52) 1.

D, Performance of the Piecewise-Recursive Kalman Filter

The figures and timing estimates given below indicate that the
piecewise-recursive Kalman filter (described in Sec. IV) is an extremely
attractive alternative to the fully implemented (extended) Kalman filter
for real-time endoatmospheric estimation., Using this filtering method,
it is possible to obtain large reductions in computation time with little
sacrifice in estimation accuracy. With the Univac 1108 computer, it is
possible ‘(as shown below) to filter measurements at a speed approximately
25 times faster than real time for endoatmospheric estimation, and yet

obtain accuracy approaching that of the fully implemented Kalman filter.

Since the fully implemented Kalman filter is approximately five
times faster than real-time (see Sec. III C) on the Univac 1108 for
endoatmospheric trajectory estimation (At = 0.05 sec), this means that
the piecewise-recursive Kalman filter is about five times faster than
the fully impiemented Kalman filter (the relative speed of the two
filters is computer-independent). With the Univac 1108 Computer, a
total time of 0,010 sec is needed to process each measurement and com-
pute an estimate of the state of the ballistic missile (as well as the
estimation error covariance) using the fully implemented Kalman filter.
When the piecewise~recursive Kalman filter is used for the estimation,
two timing figures should be noted. This arises from the fact (as dis-

cussed in Sec, IV) that there are two different modes of operation for the
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plecewise~recurcive Kalman filter: ‘in the first mode, the filter cal-
culates a weighting matrix, two error covariance matrices, and a state
estimate; in the second mode, the filter only calculates a state esti-

-mate without the weighting matrix or error covariance computations being
performed.

From the simulations on the Univac 1108 for the endoatmospheric
cases, it was found that in the first mode, the piecewise-rscursive
Kalman filter used an average of 0.0173 sec per iteration, while it used
an average of only 0,0007 sec per iteration in the second mcde, Since
on the Univac 1108 a filter iteration takes 0,.0100 sec using the fully
implemented (extended) Kalman filter, this means that in the first mode,
the plecewise-recursive Kalman filter is approximately 1.7 times slower
than the fully implemented Kalman filter; however, in the second mode,
the piecewise-recursive Kalman filter is about 14 times faster than the
fully implemented Kalman filter., The piecewise-recursive Kalman filter
encounters a first-mode calculation once every At seconds; and if
N = Ar/At, it encounters a second-mode calculation N-1 times during a
time span of AT seconds. Thus, for large values of N, the speed of
the piecewise~recursive Kalman filter in the second mode predominates
over that of the first mode. For the endoatmospheric trajectories, the
average iteration time of the plecewise-recursive Kalman filter as a
function of N (for the values of N encountered in the computer simu-
lations) is given in Table III.

Using the values in Table III, one can calculate the average speed
of the piecewise-recursive Kalman filter relative to real time for dif-
ferent AT and At. For instance, if AT = 0,5 sec and At = 0,10 sec,
then the speed of the filter is about 25 times faster than real time (on
the Univac 1108); if AT = 0.5 sec and At = 0,05 sec, then the speed of
the filter is about 20 times faster than real time (on the Univac 1108),
Thus, the piecewise-recursive Kalman filter can, on the average, process
incoming measurements 20 to 25 times faster than they are received,
Effectively then, one Kalman filter of this type could give state esti-

mates for 20 to 25 endoatmospheric ballistic targets in real time.
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Table 1II
ITERATION TIMES FOR PIECEWISE-RECURSIVE KALMAN-FILTER
(ENDOATMOSPHERIC CASES)

A7 | AVERAGE FILTER ITERATION TIME | ITERATION TIME
‘N = — | ITERATION TIME IN- FIRST MODE | IN SECOND MODE
At (s=c) (sec) {sec)
3 0.0061
5 0.0040
6 0.0035
- - 0.0173 0.0007
10 0.0024
15 0.0019
20 0.0016
30 0.0013

Now, let us discuss the accuracy of the state estimation using the
piecewise~recursive Kalman filter. It should be pointed out that in all
of the figures of this section (for both Case 1 and Case 2) the filter
was allowed to operate as a fully implemented Kalman filter for the first
four iterations; this operation serves as an initialization for the
piecewise-recursive Kalman filter, The estimation errors obtained
through simulation for Case 1 are exhibited in Figs. 22 through 27.
Figures 22, 23, and 24 show the estimation errors for Ar = 0.5, 1,0,
and 1.5 sec, respectively, when the sample interval is At = 0,05 sec.
Figures 25, 26, and 27 show the estimation errors for Ar = 0.5, 1,0,
and 1.5 sec, respectively, when the sample interval is At = 0.10 sec,
and there is no data presmoothing. The estimation errors exhibited in
Figs, 22 through 27 indicate that, for Case 1, the piecewise-recursive
Kalman filter has acceptable performance for At as large as 1.5 sec,

with At = 0,05 or 0.10 sec.

Recall that the error magnitudes plotted in Fig. 4 for the fully
implemented (extended) Xalman filter with a sample interval of At = 0,05

sec show that after 3.5 sec of filtering, the error in estimated position
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T

1s less than 830 ft, the error in estimated velocity is less than

285 ft/sec, and the error in estimated 8 is less than 665 lb/ftz.
Figures 22 through 27 indicate that for Case 1 the piecewise-recursive
Kalman filter estimation errors do not converge as rapidly as those of
the fully implemented Kalman filter; however, in the worst case, the
position estimation errors are less than 830 ft after 6.2 sec, the

velocity estimation errors are less than 285 ft/sec after 8.1 sec,

‘and the B estimation errors are less thén 665 lb/'ft2 after 12,0 sec.

Figure 28 shows the standard deviations (for Case 1) of position,
velocity, and B estimation errors [as calculated from P(k/k)] for
(1) the fully implemented Kalman filter with a sample interval,

At = 0,10 gsec, and {i1) the piecewise-recursive Kalman filter with

At = 0.10 sec and At = 1,0 sec, These two curves indicate that the
assumption made in Eqs. (36) and (37} of Sec, IV concevning the approxi-
mation of the fiitering done by the piecewise-recursive Kalman filter
is valid, Specifically, we had consldered the filtering done with a
fixed weighting matrix as being equivalent to measuremeni. presmoothing,
50 that when the estimation error covariance matrix was updated [see
Eq. (37)], the calculation used a measurement-noise covariance reduced
to R(k)At/At. The validity of this assumption is verified in Fig, 28,
since each new calculation of the estimatlion error covariance at inter-
vals of At seconds gives a decrease to nearly the value of the
covariance matrix obtained with the use of the fully impicmented Kalman

filter when it is calculated at intervals of At seconds.

Figures 29 through 34 show the estimation error magnitudes obtained
through computer simulation for Case 2, Figures 29, 30, and 31 show the
estimation errors for Ar = 0.5, 1.0, and 1.5 sec, respectively, when
the sample interval At = 0,05 sec, Figures 32, 33, and 34 show the
estimation errors for At = 0.5, 1.0, and 1.5 sec, respectively, when
the sample interval is At = 0.10 sec., For Case 2, we see from Figs. 29
through 34 that for either At = 0,05 sec or At = 0.10 sec, the filter

performance deteriorates as Ar increases from 0.5 sec to 1.5 sec,
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Figure 35 shows the standard deviations (for Case 2) of position, -t
velocity, and 8 éstimation errors (as calculated from P(k/X)] for L

(1) the fully‘implemented Kalman filter with a sample interval of

TR ATy o v e

i At = 0,10 sec, and (ii) the piecewise~recursive Kalman filter with ‘il
At

the  assumption concerning the approximation of the measurement-noise

T
.

0,10 sec and At = 1.0 sec. As in Case 1, Fié, 35 indicates that 7

TR B T
LARARTL ATy WO

b

-covariance in the estimation error covariance for the piecewise-

fragcmis

e

recursive filter is valid for Case Z.

In summary, the computer  simulations indicate that for endoatmospheric

7378 AT Y

RIS PR |

‘estimation the accuracy of the piecewise-recursive Kalman filter is.

N
v

YLt eAntadeld

comparable with that of the fully implemented Kalman filter, and that it

RIS 7atioe
Wy

A offers significant savings in computation time.

o VI  NUMERICAL RESULTS FOR EXOATMOSPHERIC ESTIMATION

A, Description of the Test Case and Filter Design Parameters

N s il
gl o

e T hw W4

. Data from a representative exoatmospheric trajectory generated by

-

simulation .using an accurate model of reentry dynamics was used to

Cer

evaluate the performance of the piecewise-recursive Kalman filter :
Wi described in Sec. IV. The computer program used in generating this 4
' trajectory was developed by M.I.T. Lincoln Laboratory.

3 In this report, the exoatmospheric test trajectory will be referred ?
é to as Case 3. It is a minimum-energy ellipse having a range of approxi-

mately 2.6 X 107 ft (4300 nmi) from launch to impact, with a reentry

a angle of about 23°, This trajectory is estimated from a range of
i . 9.4 % 106 ft (1600 nmi) to a range of 0.4 X 106 ft (66 nmi), which :
{ 3‘ corresponds to an altitude of approximately 370,000 ft for the particular :

geometry of this case,

. At altitudes greater than 300,000 ft, the atmospheric drag is

. negligible; hence, in the filter's model for the equations of the bal-
s listic missile, the drag terms have been dropped [see Egs. (1) in Sec.
I1 A). Thus, the state variable x7, which contains B8, can also be

eliminated; of course, the dimensions of the system matrices ($, H, V¥,

69
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Q, and P) are modified accordingly. Due t6 numerical difficulties that
were encountered in calculating the covariance matrices, the filter was

programmed in double precision for exoatmospheric estimation.

The filtering computations start with an initial state estimate
—2(0/05, which is now a Six-dimensional vector, and its error covariance
P(0/0)., The initial state estimates for the exoatmospheric case are
given in Table IV,

Table IV
INITIAL CONDITIONS FOR EXOATMOSPHERIC TRAJECTORY

xl xz x3 7 x“ XS Xé
(fr x 10%) {F1 x 16%) (fr x 10%) (f1/sec) {ft/sec) (ft/sec)
CASE 3
ACTUAL: x (0) -6.01 7.04 1.73 11500 -12200 3020
ESTIMATE: £(0/0) -6.10 7.14 1.63 12300 -11420 3268
|ERROR] 0.09 0.10 0.10 800 780 248

The initial error covariance (for the exocatmospheric trajectory)
was determined experimentally to be the 6 x 6 diagonal matrix

1012

1012
12
P(0/0) = 10 (53)

10
10
L 106 -

The measurement~noise covariance R(k) is based upon a model of
actual radar-noise characteristics of the PAR; the model was obtained
by making suitable modifications of the results presented in Ref, 9,
This radar model is used to generate the measurement noise of Eq. (12)

in the simulation. Observations may be taken as often as every second
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for the exoatmospheric case, but the Tilter may process fewer measurg-

ments than are taken (i.e., At 2 1.0 sec).

The random disturbance covariance Q(k) [see Eqs. (15a) and (15b)]
compensates for model inaccuracies as described in Sec., II A. This
covariance was determined experimentally to be the 6 X 6 diagonal

matrix

¢ .
UK _ .,/ _ 0 o4
=22 2 Q' (%) = 50 . (54)
{_ 50

Yo b\ YN Ak

S

22

B. Performance of the Fully Implemented Extended Kaiman Filter

For the exoatmospheric trajectory, the standard used to evaluate

AR ATH

the performance of the piecewise-recursive Kalman filter is the fully

implemented (extended) Kalman filter with a sample interval of At = 1.0

s s S %

sec, The recursive eguations for the extended Kalman filter are given

in Sec. IXII A, with the system matrices (¢, H, W, Q, and P) modified

gy

appropriately. This filter was used to estimate the ballistic trajectory

Cowb e

for Case 3, using the simulated trajectory and measuvrement noise. The

filter yields state estimates X(k/k) at sample intervals of At = 1.0

secC.

SRR YOO, YO W

RANGE —ft x 105
7 6 8 4 3 2 |

2 1 4
E | ]
. *l : i
¥ .
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| B i Toagh i
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FIG. 3 MEASUREMENT NOISE — CASE 3
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The magnitude of the measurement error in positicn is shown in Fig. 36
for Case 3. 1In order to relate range and time, the measurement error is
plotted as a function of both variables; in all other figures, the plots
are a function of time only, Figures 37 a, b, and ¢ show the magnitude
of the estimation exrrors for position, velocity, and acceleration,
respectively, for Case 3. It should be noted that acceleration is not
computed directly by the filter but is calculated from the state estimate
using Egs. (1) of Sec., II A, Additionally, as noted above, 8 is not

estimated for the exoatmospheric case.

From Fig. 37, it can be seen that after 30 sec of filtering, the
magnitude of the error in estimated position is less thun 6,000 ft (for
Case 3, the initial error in position is 167,000 ft); after 170 sec, the
position error is less than 2,000 ft. After 30 sec of filtering the
magnitude of the error in estimated velocity is less than 200 ft/sec
(for Case 3, the initial error in velocity is almost 1200 ft/sec); after
100 sec, the velocity error is less than 50 ft/sec.

C. Performance of the Fully Implemented Extended Kalman Filter with
Different Data Rates

As discussed in Sec, V C, the simplest scheme for improving the
real-time capability of the Kalman filter is simply to decrease the data
rate. If the sample intervals are lengthened and the additional time
between samples is not used to presmooth the measurements (i.e., the
intermediate measurements are discarded), then obviously the filter
performance will deteriorate to some extent, The present study also
considers the situation where there is presmoothing of the measurements,
In practice, data is presmoothed by curve-fitting with polynomials that

are not precise representations of missile trajectories.

The assumption of data presmoothing implies that in the filter
equations the measurement-noise covariance should be reduced accordingly.
In the computer simulations done for this report, the presmoothing of
the measurements was simulated by scaling the measurement noise by the
factor./ Ato/At . This corresponds to decreasing the measurement-noise
coariance by the factor Ato/At. A justification for the approximation
is pacsented in Sec, V C, although it should be noted that this pre~

smoothing assumption is overly optimistic,
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The estimation.error plots of Figs. 38 through 41 illustraté the
effects of data présmoothing upon thé extended Kalfan filter's perfor-
mance for .Cage 3.. Figgfes 39 éﬁd 41 show. the effécts of increasing the.
samgiefinﬁerval'(décréasing‘thé.daéa rate) from At = 1,0 se¢ to
Af =2,0 and 5,0 sec, respectively, while .also .using the increased time
between. samples to presrodth the measuremert datd. The presmoothing
assumptiohs‘deécribed«abové,ére used for the results presented in
Figs. 39-and 41.

Figﬁreg 38 and' 40 indicate that without presmoothing the estimation
errors become increasingly larger as the filter's sample interval At

is increased. qugver,,?igs, 39 and 41 indicate that if the data is

‘presmoothed -the position and velocity estimation errors generally

decréase with increasing At. Thus, the reduction of the measurement
noise ‘through presmosthing is beneficial in position and velocity éesti-

mation,

Thejpa;rs of Figs. 38 and 39, 40 -and 41 illustrate the extended
Kalman-filtér performance, with and without data presmoothing, for
sample intervals of At = 2.0 -and 5:0 sec, respectively, As noted
above, the ‘presmoothing assumption is optimistic and for a given At,
the filter estimation errors for actual presméothing will be somewhere
between the errors given in the corresponding pair of figures, Thus,
for the particular simulations presented here, we have bounded the

filter estimation errors for different values of At.

Figures 42 a and b show the standard deviations in the estimates of
position and velocity as computed from the diagonal elements of the
calculated estimation error covariance [Eq. (29)]. Each of the Figs. 42
a and b shows two curves: Curve (i) is the calculated standard devia-
tion when there is no data presmoothing, and Curve (ii) is the calculated
standard deviation when there is presmoothing; these plots are for
Case 3, with a sample interval of At = 5.0 sec. The standard deviation
in position error is calculated as the square root of the sum of the
first three diagonal elements of the filter covariance matrix, P(k/K).

That is, the standard deviation of position error is given by
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is calculated as JFP + P +.B-

RIPTT. e
/-;} Ll

66 °
L Figure 42 shows that the calculated standard deviations [derived

. from P{(k/k)] are in correspondence with the actual estimation error-

s et

magnitudes (both ‘with and without pPresmoothirig). Also, the standard

"

H
.
>y
&
N
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O G en

- deviations in position and velocity ‘estimation errors are reduced (as

1o s

AN ¢

% expected) ‘when there is presméothing.

A AN g

RO

wwe et

s Figures 43 a and b show the standard deviations in position and

N,
PRy

L velocity estimation errors for (i) a sample interval of 1.0 sec, ‘and’ .
(ii) a sample interval of 5.0 sec; Curves (i) and -(ii) are for Case 3 g

with no data presmoothing. Again, the standard deviation plots agree

ol

- with the actual estimation érror magnitudes, For instance; comparison:
; ’j -of Figs. 37 and 40 with Fig. 43 shows that the position -estimation error
: -magnitude increases when At is increased from 1.0 :sec to 5.0 sec, but
this is to be expected since, with no .presmoothing, the calculated
position standard deviation [Fig: 43 a] also increases,

. D, Performance of the. Piecéwise~Recursive Kalman Filter

N The figures and timing estimates given below indicate that the

L Th A e

»

> plecewise-recursive Kalman filter (described in Sec, IV) is an extremely ¢
attractive alternative to the fully implemented {(extended) Xalman filter
for real-time exoatmospheric estimation. Using. this filtering method,

it is possible to obtain large reductions in computation time with little
sacrifice in estimation accuracy. With the Univac 1108 computer, it is £
possible (as shown below)‘to filter measurements at a speed approximately 2
500 times faster than real time for exoatmospheric estimation, and yet ;

obtain accuracy approaching that of the fully implemented Kalman filter, ;

Since the fully implemented Kalman filter is approximately 100 times d
faster than real~time (see Sec., III C) on the Univac 1108 for exoatmos=-
pheric trajectory estimation (At = 1.0 sec), this means that the piecewise-

. recursive Kalman filter is about 5 times faster than the fully implemented

Kalman filter (the relative speed of the two filters is essentially
computer-independent). With the Univac 1108 Computer, a total time of

05 fa L L B G N

0.011 sec is needed to process each measurement and compute an estimate

OIS
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of the state of the ballistic missile {as well as the estimation error
covariance) using the fully implemented Kalman filter. When the
plecewise~-recursive Kalman filter is used for the estimation, two
timing figures should be noted., This arises from the fact (as discussed
in Sec. IV) that there are two different modes of operation for the
plecewise~recursive Kalman filter: in the first mode, the filter cal-
culates a weighting matrix, two error covariance matrices, and state
estimate; in the second mode, the filter calculates only the state

estimate, without the weighting matrix or error covariance computations
being performed.

From the simulations on the Univac 1108 for the exoatmospheric
case, it was found that in the first mode, the piecewise-recursive
Kalman filter used an average of 0.0200 sec per iteration, while it
used an average of only 0,0010 sec per iteration in the second mode,
Since a filter iteration on the Univac 1108 takes 00,0110 sec using the
fully impiemented (extended) Kalman filter, this means that, in the
first mode, the piecewise-recursive Kalman filter is approximately 1,8
times slower than the fully-implemented Kalman filter; however, in the
second mode, the plecewise-recursive Kalman filter is about 11 times
faster than the fully implemented Kalman fiiter. The plecewise~recursive
Kalman filter encounters a first-mode calculation once every §r seconds;
and if N = Ar/At, it encounters a seoond-aode calculation N-1 times
during a time span of Ar seconds, Thus, for large values of N, the
speed of the piecewise~recursive Kalman filter in the second mode pre-
dominates over that of the first mode. For the exoatmospheric trajectory,
the average iteration time of the piecewise~recursive Kalman filter as a
function of N (for the values of N encountered in the computer

simulations) is given in Table V.,

Using the values in Table V, one can calculate the average speed of
the piecewise~-recursive Kalman filter relative to real time for different
At and At. For instance, if A+ = 20 sec, and At = 1,0 sec, then the
speed of the filter is about 500 times faster than real time (cn the
Univac 1108), Thus, with #~ = 20 sec and At = 1,0 sec, the piecewise-

recursive Kalman filter can, on the aveiage. process incoming measurements
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Table V

ITERATION TIMES FOR PIECEWISE-RECURSIVE KALMAN FILTER
(EXOATMOSPHERIC CASES)

Ar AVERAGE FILTER ITERATION TIME ITERATION TIME
N = Ar ITERATION TIME IN FIRST MODE IN SECOND MCDE
i (sec) (sec) (sec)
5 0.0048
10 0.0029
20 0.0020 0.0200 0.0010
50 0.0014
100 0.0012

500 times faster than they are received, Effectively then, one Kalman
filter of this type could give state estimates for 500 exoatmospheric
ballistic targets in real time.

Now, let us discuss the accuracy of the state estimation using the
plecewise~recursive Kalman filter, It should be pointed out that in all
of the figures of this section (for Case 3) the filter was allowed to
operate as a fully implemented Kalman filter for the first 10 iterations;
this operation serves as an initialization for the plecewise-recursive
Kalman filter. The estimation errors obtained through simulation for
Case 3 are exhibited in Figs. 44 through 49. Figures 44, 45, and 46
show the estimation errors for Ar = 20, 50, and 100 sec, respectively,
when the sample interval is Ar = 2.0 sec and there is no data presmoothing.
The estimation errors exhibited in Figs. 44 through 49 indicate that, for
Case 3, the piecewise-recursive Kalman filter has acceptable performance

for Ar as large as 100 sec, with At = 1,0 or 2.0 sec.

Recall that the error magnitudes plotted in Fig., 37 for the fully
implemented {extended) Kalman filter with a sample interval of At = 1,0
sec show that after 30 sec of filtering, the error in estimated position
is less than 6,000 ft and the error in estimated velocity is less than
200 ft/sec., Figures 44 through 49 indicate that for Case 3, the
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plecewise-recursive Kalman filter estimation errors do not converge as
rapidly as those of the fully implemented Kalman filter; however, in
the worst case (At = 1,0 or 2.0 sec and At = 100 sec) the position
estimation errors are less than 6,000 ff£ after 230 sew and the velocity
estimation errors are less than 200 ft/sec {except for infrequent

excursions) after 200 see.

Figure 50 shows the standard deviations {(for Case 3) of position
and velocity estimation errors {as calculated from P(k/k)] for (i) the
fully implementsd Kalman filter with a sample interval, At = 2.0 sec,
and (ii) the plecewise~recursive Kalman filter with At = 2.0 sec and
Ar = 20 sec. These two curves indicate that the assumption made in
Eqs. (36) and (37) of Sec. IV concerning the approximation of the fil-~
tering done by the piecewise~recursive Kalman filter is valid. Specifi-~

cally, we had considered the filtering done with a fixed weighting
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matrix as being equivalent to measurement presmoothing, so that when the
estimaticn error covariance matrix was updated [see Eq. (37)], the cal-
culation used a measurement noise covariance reduced to R(Kk) At/AT.

The validity of this assumption is verified in Fig. 50, since each new
calculation of the estimation error covariance at intervals Ar sec
gives a decrease to nearly the value of the covariance matrix obtained
with the use of the fully implemented Kalman filter when it is calcu~

lated at intervals of At sec.

In summary, the computer simulations indicate that for exoatmosphkeric
estimation the accuracy of the piecewise-recursive Kalman filter is com-
parable with that of the fully implemented Kaliman filter, and that it

offers significant savings in computation time.
VII CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

Téis\study has addressed itself to the problem of real-time imple-
mentation of the Kalman filter for estimating ballistic trajectories.
As shown in this study and Ref. 1, the Kalman filter is an extremely
effective algorithm for estimation of ballistic trajectories, although
the computational requirements of the fully implemented Kalman filter
are quite severe, On the Univac 1108 Computer, the fully implemented
Kalman filter runs about five times faster than real time for the endo-
atmospheric cases and about 100 times faster than real time for the

exoatmospheric cases,

Tn this report, several approaches that may be used to modify the
Kalman filtering algorithm in order to reduce the computational require-
ments are described. The most promising approach of those considered
is the piecewise-recursive Kalman filter, which is described in Sec. IV.

As shown by the numerical results obtained from extensive computer
simulations (see Secs. V and VI), the piecewise-recursive Kalman filter
can process measurements of a single target at a computational speed

(on the Univac 1108) that is about 20 to 25 times faster than real time for

the endoatmospheric cases and about 500 times faster than real time for
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3 (1)

(2)

; (3)

the exoatmospheric cases, and yet obtain estimation accuracy approaching
that of the fully implemented Kalman filter., This increased filter

capability is invaluable for the real-time estimation of multiple targets.

. Other investigations that should be performed in order to further

reduce the computation time of the piecewise-recursive Kalman filter are:

Use a piecewise-linear weighting matrix in the filter,
rather than a piecewise-constant weighting matrix as
described in Sec, IV, This approach can be readily in-
corporated into the existing computer program and should
yield significant reductions in computation time for
comparable filter performance by allowing larger values
of AT,

Vary At and/or At over different portions of the
estimation interval, This approach can be placed upon a
rigorous basis by applying the sensitivity results
obtained in Ref. 6, and it also should reduce the filter's

average computation time per iteration,

Simplify the model of the system equations that is used
in the filter's covariance calculations. As shown in
Table I of Sec, III C, these covariance calculations

comprise the major portion of che computation time per

filter iteration,
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